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Turbulent intermittency is analyzed in terms of statistics of breakdown coefficients, an alternative to
the multifractal formalism. The processing of experimental data at a very large Reynolds number shows
a persistent influence of the local Reynolds number up to a sufficiently large value. The data also indi-
cate that the breakdown process is nonhomogeneous. Scale similarity is approximately valid, but, in the
present data, a logarithmic correction is depicted. A probability distribution inside the family of
infinitely divisible distributions is presented that compares well with experimental data.
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I. INTRODUCTION

The fundamental theory [1,2] about the local structure
of turbulent fields is aimed to predict the scaling proper-
ties of turbulent velocity differences between two points
separated by a given length scale, i.e., the cascade pro-
cess, relating it to the rate of dissipation of the kinetic en-
ergy. Its major approximation stands on the assumption
that the rate of dissipation is uniformly distributed inside
the flow field.

The distribution of such a quantity is far from being
uniform; it is actually strongly fluctuating, and intermit-
tently distributed in the flow field. Then its average value
is not sufficient for the description of the local structure
of turbulence. This fact was pointed out by Landau [3]
almost immediately after the formulation of the
Kolmogorov-Obukhov 1941 theory and confirmed by ex-
perimental observations [4].

The first refined model of the internal structure of tur-
bulence which takes into account the fluctuations of ener-
gy dissipation [5,6] introduces the concept of local aver-
age over spheres whose radius is equal to the length scale
that similarity refers to. Even though the derived log-
normal model was revealed as asymptotically incorrect
[7], the concept of local average has then been used, and
extended, for exploring the scaling of energy dissipation.
Since then several models have been proposed, starting
from experimental observations and phenomenological
assumptions of the cascade dynamics; see [8,9] for re-
views. Nevertheless, a rational and complete description
for the scaling properties of the dissipation field is still to
be developed and the phenomena leading to differences in
the experimental observations must still be clarified
[10,11].

The concept of scale similarity of random fields was
developed in [7,12], where the cascade process was inves-
tigated by considering the ratio between the values of en-
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ergy dissipation averaged over two spheres of different
sizes contained one inside the other. These quantities,
known as breakdown coefficients (or multipliers), appear
as natural in understanding the scaling properties of ran-
dom fields in several respects [13], and other representa-
tions, such as multifractal, can be derived from this
[8,11].

The present work deals with the statistical description
of breakdown coefficients with particular attention on
their probability distribution. After an introduction to
the problem, the dependence of the statistics from the lo-
cal Reynolds number and the nonhomogeneity of the
breakdown process is analyzed by experimental results
(Sec. II). In Sec. III, the hypothesis of scale similarity is
verified and a possible correction is presented. Then, in
Sec. IV, the probability distribution of breakdown
coefficients is considered inside the family of infinitely
divisible distributions [14] and a new distribution is pro-
posed.

II. BREAKDOWN COEFFICIENTS

Consider a non-negative random field €(x), which we
will call the rate of energy dissipation, but it can be the
square of any component of the velocity gradient tensor.
Its experimental reading in time &(¢) is assumed to be
equivalent to a one-dimensional section of the field e(x)
under the frozen-flow assumption x = Ut, with U equal to
the mean velocity.

In the one-dimensional section of the field, let us con-
sider two segments of sizes / and », I >r, embedded one
inside the other, and define the breakdown coefficients as

g,(x")

4y (8)= <L, M

g;(x)

where

475 ©1996 The American Physical Society



476 PEDRIZZETTI, NOVIKOV, AND PRASKOVSKY 53

1 x+r/2
== d.
g,(x) rfx—r/Z e(s)ds

is the definition of local average. The inequality in (1)
derives from the non-negativity of the field. The parame-
ter A, defined by

_x'—x

. )

represents the relative displacement of the two segments,
A==l corresponds to the rightmost and leftmost inner
segments, respectively, while A=0 means that the seg-
ments are centered at the same point. The statistical
characteristics of breakdown coefficients (1) do not de-
pend on the absolute position x when the field is homo-
geneous; this is correct for the small scales of a turbulent
field assuming r </ <<L, where L is a typical integral
scale. At the same time, statistical characteristics, gen-
erally, depend on the local Reynolds number R,, defined
as (&)!/3r43y7 ! being v the kinematic viscosity, which is
equivalent to dependence on r /7, where n=v>"4(¢g) "1/
is the Kolmogorov internal scale [15]; { ) here and
below means statistical averaging. The A dependence of
the statistical characteristics cannot be dropped a priori,
and only a symmetry for positive and negative values can
be enforced for the local isotropy of the random field.
This dependence defines the nonhomogeneity of the
breakdown. A simple example of nonhomogeneity for a
random sequence has been shown in [7]. It was also indi-
cated in [7] that the correlation between €, and ¢; and
their joint probability distribution depends on A. Under
the natural assumption that the correlation function of
the field £(x) decreases with the distance between points,
it can be shown that the correlation between €, and g, is
maximal for A=0 and minimal for A==+]. Thus, the
probability density function (PDF) of the breakdown
coefficients (BDC) generally depends on A and we denote
it by Wi(qlI/r,A) and its moments {gZ,(A))
=f(’)/’qPW(q,l/r,A)dq.

In the following analyses we consider the experimental
data set obtained by one of the authors (A.A.P.) in the re-
turn channel of the Central Aerodynamics Institute wind
tunnel in Moscow [175X22X(20-32) m]. The detailed
description, analysis, and verification of this data has
been given elsewhere [16-18]. The Reynolds number
based on the Taylor microscale is 3200 and the ratio be-
tween integral and viscous scales is L /7=~12000. The
data consist of approximately 4X 10° measurements of
both the longitudinal and transversal velocity derivatives.
In what follows, the results obtained for the longitudinal
derivative are reported, but no appreciable quantitative
differences have been found in breakdown coefficients
statistics for the two cases. We must also mention that
independence from the sampling rate [10] has been
verified in the presented results.

In the investigation of intermittency the structure of
breakdown is explored inside the inertial range of tur-
bulence. In this view it is assumed that the local scales
are far enough from the dissipative scale n<<r <l <<L
such that the » /7 dependence can be dropped. Neverthe-
less, few quantitative results are reported about how far

scales must be from 7. A limit of around r /7> 500 can
be extrapolated from the results reported in [10].

In order to quantify the value of the local Reynolds
number necessary to have a cascade process independent
from the ratio r/r, we compute the probability density,
and moments, varying r/7m for several values of the
breakdown ratio / /7. In Fig. 1 the probability density of
the breakdown coefficient is reported, at A=0, for [ /r=2
(top) and I/r=8 (bottom), with the ratio r/m ranging
from 50 to values for which / is comparable with the in-
tegral scale. It can be observed that for //r=2 conver-
gence to a unique curve takes place for r=~10007,
whereas for I /r=38 the limit is reduced to about 300. In
Fig. 2 the second- (top) and fourth- (bottom) order mo-
ments are plotted versus r/7 for several values of //r.
Convergence for growing r /7, say, larger that 500, is ob-
served (at least in first approximation). From this it must
be emphasized that results obtained in intervals of size
closer to 7 cannot be used directly for quantitative infor-
mation about the inertial range breakdown. The relative-
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FIG. 1. Probability distribution function of centered break-
down coefficients (A=0) with [ /r=2 (top) and I/r=8 (bottom).
Various curves are for different values of r/7 indicated in the
pictures.
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ly large limit value of the r /7 ratio induces the necessity
of data with very large Reynolds numbers, in general
larger than what is necessary to identify inertial range
behavior for velocities. An analogous dependence was
observed in [10]. In what follows the results are present-
ed for values of r /7 large enough such as to neglect the
dependence from it. Indicatively, it has been assumed
that convergence to a unique statistic is obtained for
700 n<r <l <0.5L.

The dependence of the breakdown process from the
displacement parameter A has been often ignored in
literature, leading to some controversy among apparently
comparable results. Actually, it was shown in [7] that
even a simple Markov random sequence can lead to this
dependence, and no argument has ever been given in sup-
port of the breakdown homogeneity. The probability
density functions for //r=2 and //r=4 are plotted in
Fig. 3 (top) for A=0 (continuous lines) and A= 1 (dashed
lines). It can be clearly observed that the dependence
from this parameter is significant. The continuous curves
are comparable with the measurement reported in [10]
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FIG. 2. Second- (top) and fourth- (bottom) order moments of
breakdown coefficients as a function of r /7, for various ratios
I /r, indicated in the pictures.

obtained with A=0; the dashed ones are more similar to
measurements reported in [11,19]. The moments corre-
sponding to the I /r=2 distributions are plotted in Fig. 3
(bottom). The distribution for A=1 has a smaller max-
imum and more elongated tails (or larger high-order mo-
ments), indicating a more intermittent cascade process.

It is clear that the A dependence cannot be ignored and
scaling considerations must be developed for a fixed value
of A. In what follows the two limiting cases A=0 and
A= will be considered.

III. VERIFICATION OF SCALE SIMILARITY

Inside the inertial range we can assume that the break-
down retains its universality while the corresponding
Reynolds number is sufficiently large. Here the statistics
of breakdown coefficients depends only on the scale ratio
1 /r and on the absolute value of the displacement |A].

In order to introduce the concept of scale similarity, let
us consider an intermediate nested segment of size s,
r <s <lI, so that q,,(A)=gq, (A)g,,(A). Let us stress

(I/r) W(q,lir)

q/ (i)

<qP>

FIG. 3.
coefficients with //r=2 and 4 (top), and moments for //r=2
(bottom), for displacement parameter A=0 (continuous line)
and A=0.5 (dashed line).

Probability distribution function of breakdown
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that the relative displacement A should be kept the same
through the breakdown process, otherwise we cannot ex-
pect similarity. Under the hypothesis

(g2 (A))={(gP(A)){gP/(A)) , (3)

it follows that moments must be expressed in accordance
with scale similarity as
uip,A)

(g2,(A))= ; 4)

with the conditions u(0,A)=0, and [7,12]
ulp +8,A)—ulp,A)<8 (6=0). (5)

Notice that the wu(1)=0 condition, used in Refs.
[8,10,11,14,19-21], was derived [12] from independence
of breakdown with respect to the parameter A and can-
not be enforced [7].

As indicated in [8], condition (3) is sufficient and neces-
sary for scale similarity (4). Condition (3) follows from

conditioned W(q,2,0)

conditioned <g®>

0 2 4 6 8 10

FIG. 4. Conditional probability distribution function (top)
and moments (bottom) of breakdown coefficients g¢,,, condi-
tioned to the value of g, , for I/s =s /r=2 (BDC are computed
by ratios of averaged energy dissipation measured simultaneous-
ly in three intervals contained one in another and centered,
A=0). Unconditional (continuous line), conditioned to g,; =<1
(dashed line), conditioned to g, ,; > 1 (dash-dotted line).
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FIG. 5. Moments of breakdown coefficients {(gf;) (continu-
ous line with circles) and product (g7, ){g?,) (dashed line with
stars) for [ /s =s /r=2.

the stronger condition of independence of successive
breakdown coefficients ¢, and g,;. Before moving to
verification of Eq. (4) we start by verifying the hypothesis
leading to it.

Independence of successive breakdown coefficients en-
sures the fulfillment of scale similarity. In order to verify

<qP>

<qr€1 >’
P =2,4,6,8, as a function of [/ /r. The dashed lines connect the
experimental data.

FIG. 6. Moments of breakdown -coefficients
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this we consider the statistics of g,, in the arbitrarily
chosen case s/r =I/s=2, conditioned with the value of
q;,; larger and smaller than 1. In Fig. 4 (top) we report
the probability distribution of W(gq,s /r=2,0) (continuous
curve) and the same function conditioned by ¢;; <1
(dashed) and g;;>1 (dash-dotted). Corresponding mo-
ments are reported below. We can clearly observe sys-
tematical differences between the two statistics, indicat-
ing a dependence of successive coefficients. This fact has
already been noticed in [19]. It can be seen that for
g;,; <1 the probability distribution of g, is shifted to-
wards smaller values; for g, ; > 1 the shift is reversed. Let
us stress that condition (3) is slightly weaker than com-
plete independence and is still sufficient for scale similari-
ty (see also [19]). In Fig. 5 we report the two sides of Eq.
(3) for s/r=1/s=2, A=0; here we can see that hy-
pothesis (3) is not supported by the used data. However,
it is not clear how the discrepancies in Eq. (3), as measur-
able from Fig. 5, influence the verification of scale simi-
larity (see also [19]).

So, even without an a priori guarantee, we can check
the validity of Eq. (4) directly. In Fig. 6 we report mo-
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FIG. 7. Scaling exponent u(p,!/r,0) as a function of moment
order p for various scale ratios (top), as a function of scale ratio
for various moment order (bottom).

ments of breakdown coefficients versus scale ratio / /r for
moment order p=2,4,6,8, and A=0 (top), A=1 (bottom).
It must be pointed out that, for scale ratio larger than
about 8, there is no way of keeping both segments / and r
inside the suggested limits 7009 <r <! <0.5L =60007,
expressed in the preceding section; data reported for
larger values have been included to extend the I/r
domain and for verification of trends but must be con-
sidered with caution. From the pictures we can see that
scale similarity, expressed by Eq. (4), approximates close-
ly the actual physics. Nevertheless, the agreement is not
perfect and a small curvature can be seen in the reported
graphs, in particular keeping in mind that curves must
converge to the point (I/r =1,{g?)=1). This behavior
has been verified to occur independently from the local
Reynolds number, when it is sufficiently large, as ex-
plained in Sec. II. We must mention that a better agree-
ment with self-similar scaling could be noticed in a limit-
ed range of r/7, about 10-100, but with a substantial
dependence of the exponents from the value of » /7 itself.
The rest of the present work is focused on describing
the probability distribution of breakdown coefficients. In

—71—O— S © had © p=2

0
Infin(V/r)]

FIG. 8. Scaling exponent u(p,!/r,0) as a function of the dou-
ble logarithm of scale ratio for various moment order (top); and
its value, subtracted by the logarithmic variation with scale ra-
tio, as a function of moment order for various scale ratios (bot-
tom).
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this view we wish to look at moments (4) in an alternative
perspective: for each value of the ratio / /r we can write

I/r
=log,,, ‘fo q'W |q

where the [/ /r dependence has been included on the left
side, and it would disappear in the case of scale similari-
ty. The results from Eq. (6) are reported in Fig. 7, for
A=0. It can be noticed that even if scale similarity
represents a first approximation to the actual scaling, a
relevant additional !/r dependence is present. This
dependence is plotted in Fig. 7 (bottom), for moments.
After an extensive analysis in which several possible addi-
tional //r dependencies have been tested, the unique
functional agreement has been found with a bilogarithmic
dependence of the exponent u, as shown by the alignment
of the experimental points in Fig. 8 (top). After this, mo-
ments of breakdown coefficients can still be expressed by
Eq. 4), at least for 1.5=<1/r <12, with

u P,%,A i ,A |dg (6)

m =po(p,A)+a(p,A)n |In |— ; (7)

[
p,r,A

The two unknown functions uy(p,A) and a(p,A) can be
derived by fitting the experimental data, where py(p,A)

4.5

4
3.5F-
3
25

FIG. 9. Scaling exponent functions uy(p,A) (top) and a(p,A)
(bottom), obtained by best fit of experimental data. Displace-
ment parameter A=0 (continuous line), A= % (dashed line).

corresponds to wu(p,!/r,A) with I/r =e (e being the base
of natural logarithm). In the present case the functions
wolp,A) and a(p,A) have been obtained by a best fit of the
data reported in Fig. 8 (top), for [ /r =12. The collapse
into approximately one curve is shown in Fig. 8 (bottom),
where the exponent u(p,//r,A), subtracted by the addi-
tional term, is plotted. For future reference, the present
estimates for the functions uy(p,A) and a(p,A) are re-
ported in Fig. 9 for A=0 (continuous line) and A=1
(dashed line).

Formula (7) corresponds to a multiplicative correction
to scale similarity (4) given by In(l/r)@P2Mn0/1)  Thig
logarithmic correction cannot be assumed as a general
character of breakdown until confirmed by further re-
sults. It could be connected to limitation of Reynolds
number in the present data and we hope it will stimulate
measurements, in particular at larger R,, to verify scale
similarity and, possibly, logarithmic correction.

In constructing a model, it is useful to have in mind re-
strictions, which follows from the definition (1) of break-
down coefficients. Limiting ourselves to the case A=0
and A==, we have the following identities:

1 ) 1
a1 5 :;_ ’ -1 q1—r1 3 (8)
l 111 1
qr,1(0)=7_5 7—1 q1—r/2,1 l 2
+90-ns +E 9)

Statistical constraints are obtained by taking the p power
of both sides in (8) and (9), statistical averaging, and tak-
ing into account local isotropy (i.e., dependence of statis-
tics from the sign of A). This procedure gives relations
among various moments at different (conjugate) scale ra-
tios. In the simplest case p =1,3, [ /r=2, we obtain from
(8) and (9)

‘LL(I,Z,%)=O, 2;4(1,2,0)___2_4;1(1,4,1/2) ,

gH(3,2,1/2) (10)

:3xz#(2,2,1/2)_2 .

For p=2 identity (8) was used [14] in order to show that
with A==l we do not have scale similarity. For simpli-
city it was assumed u(1,//r,£1)=0. Without this as-
sumption, denoting / /r =A, we have

k

—1

p(1L,A/(A—1),1/2)
}JL(Z,K, 1/2)=A,2'-2?\.( —1)

W2,A/(A—1),1/2)
_A

—1)2
+HA—1D? |55

(11)

We see that if u does not depend on scale ratio, Eq. (11)
cannot be satisfied for arbitrary A (apart from the trivial
solution corresponding to a uniformly distributed rate of
dissipation field). The exception is A=2. Thus, generally
speaking, there is no scale similarity for A=+]. The
best candidate for scale similarity is, probably, break-
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down with A=0 for very high Reynolds number.

Model (7) with p, and «, obtained by fit of the data,
was tested with the use of Eq. (8) in the range 1<[//r =8
for p=1,2,3. A relative error was found from 0.5-5%
which is related to the empirical estimates of the func-
tions appearing in (7). An analytical modeling for the
dependence of moments from p, A, and possibly / /7, can
be verified and improved in future for broader data sets
by an explicit consideration of such constraints.

IV. PROBABILITY DISTRIBUTION
OF BREAKDOWN COEFFICIENTS

The present section is devoted to the description of the
probability distribution W(q,l/r,A) of the breakdown
coefficients aiming to verify the correctness of modeling
and to identify possible directions to develop optimal
models.

The concept of scale similarity has been embedded into
the theory of infinitely divisible probability distribution in
[14]. When breakdown is scale similar, it has been shown
that if the variable z, ;= —In(r /lg,,;) has infinitely divisi-
ble distribution, concentrated on the interval [0, « ), then
all properties for the function u(p,A) [see, in particular,
Eq. (5)] and for the probability W(q,! /r,A) are automati-
cally satisfied. In this case an alternative approach to
modeling is given by choosing a measure F on the inter-
val (0, o ) such that (1+x) 7! is integrable with respect to
it. Given such a measure, the scaling exponent is [14]

coefficients, proposed in [20]. An unusual extension of
(14) will be used below in the form

—x/0; —x/0,
—e )’

F'(x)=Al(e o,>0,. (15)

Unlike the traditional superposition of measures with
different parameters, Eq. (15) corresponds to a difference
between two measures and is a measure only with addi-
tional condition on parameters. The behavior of this
measure near x ~0 is quite different from (14). The mod-
el (15) can be called diexponential, it has three parame-
ters and, in this sense, is more flexible than model (14).
Let us note that the § measure F'(x)=C8(x —a) with
positive constants C and a, corresponds to models
presented in [21] and [22].

The free parameter xk in Eq. (12) is related to the
asymptotic behavior of u(p) for large p. Following [14],
we assume that the probability distribution W(q,l/r,A)
has no gap in the interval [0,/ /r]. In fact, our data sup-
port this assumption (see also below). From the definition
(6) we write:

1

l

l 1/r
, = A Wiq,—,A |d
u\p , q9 , q

Slogl/r l 0

l p
=10gmH;] }=p , (16)

where normalization of W is used. In the case of scale

() f w ]—e P* Fldx) 12) similarity, this inequality follows also from condition (5).
u(p)=«kp 0 - Xx) ;5 Defining
and the probability distribution is then given by A= lim % wip,1/rA) ,
p—®
w q,i =L +°°exp —is In(q) we have also
r 2mq Y —
1 1/r l
h = lim —log; q*W |q,—,A |dq
+ulis)In | = }ds . (13) p—o P /"fxo r
. . . > 1 1 1/r l
The problem of choosing a model is then reduced, in = 1111:0 —log;,, 1A f 4 4,7,/3 dq
the case of scale similarity, to the determination of the p P 0
measure F. In particular, a measure with density 1 1y !
=log;,,(A;)+ lim —log W |q,—,A |dg
F'(x)=4e %%, 4>0, a>0 (14) A i A r
corresponds to a log-gamma distribution for breakdown =log,,,(Ag) (17)
TABLE I. Parameter values of the probability density functions discussed in the text.
Exponential Diexponential
i/r A A o A o, o,
2 0 8.47 0.129 8.80 0.126 0.161x1072
2 % 5.29 0.208 5.90 0.192 0.613X 1072
4 0 6.14 0.182 7.65 0.156 0.113X107!
4 1 3.71 0.314 5.89 0.221 0.319%X 107!
8 0 5.07 0.226 8.44 0.159 0.279X 107!
8 % 2.97 0.413 13.3 0.177 0.932X107!
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FIG. 10. Probability density function, //r=2 and A=0,1:
experimental data (continuous rough line), diexponential model
(continuous line), exponential model (dashed line).
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FIG. 11. Probability density function, / /r=4 and A=0: ex-
perimental data (continuous rough line), diexponential model
(continuous line), exponential model (dashed line). Note that
the right tail is presented log-linearly, which changes curvature.
Corresponding scaling exponent (bottom): experimental data
(circles), its approximation by logarithmically corrected model
(crosses), diexponential model (continuous line), exponential
model (dashed line).
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for any Ay <I/r. Here we assumed that there is no proba-
bility gap. From (16) and (17) we obtain the no-gap con-
dition [14] h=1. This result also has the implication for
the asymptotic scaling exponents £, of velocity incre-
ments in the inertial range. The usual connection be-
tween exponents for velocity increments and dissipation,
§,=n/3—u(n/3), given by the refined similarity hy-
pothesis of Kolmogorov, leads to the condition £, /n—0
with n—>o. The model presented in Ref. [21] has
h =2/3 and implies {, /n —1/g with n — .

Using this asymptotic condition for the models (14)
and (15) we get in (12) the constant k=1. The scaling ex-
ponents corresponding to Egs. (14) and (15) can be ob-
tained analytically as

up)=p — Aln(po+1) (18)
and
po;+1
up)=p—Aln po, 1 ] (19)
respectively.

The present data do not exactly satisfy scale similarity.
Nevertheless, we assume that infinitely divisible models
are still appropriate, at least as a good starting point, tak-
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FIG. 12. The same as Fig. 11, but with //r=8.
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ing into account the logarithmic //r dependence ob-
served in the preceding section. In order to test the accu-
racy of models (14) and (15), we consider the scaling ex-
ponent u(p,l/r,A) given by formula (7) with the func-
tions py(p) and a(p) plotted in Fig. 9. By this, parame-
ters in formula (18) and (19) can be evaluated by the
least-square error minimization procedure, without any
further use of experimental data after the estimate of
olp) and a(p). The parameters of the probability distri-
bution used in the following results, are reported in Table
I

The probability distribution obtained for I/r=2 is
plotted in Fig. 10 for A=0 and 1. The data (rougher
curve) and the result from the model (15), (19) are plotted
with continuous line, model (14), (18) is reported with the
dashed line. It can be noticed that the models are practi-
cally coincident (actually o,=~0) and adapt well on the
experimental data. The curve for A=1 appears identical
to that of Ref. [11].

The probability distribution for I /r=4, W(q,4,0) is re-
ported in Fig. 11 (top), with the same lines as in Fig. 10.
The corresponding scaling exponent is plotted below: the
experimental points are represented by a circle, the out-
come from formula (7) with crosses, the diexponential
model (15) corresponds to the continuous line, the ex-
ponential model (14) is represented by the dashed line. In
this case the diexponential model adapts well on the ex-
perimental data whereas the simpler exponential model is
less accurate. It must be noticed that both models well
capture the tail of the distribution, both being consistent
with the asymptotic consequence (16), (17). The outcome
for I /r=8, A=0, is described by Fig. 12. The probability
distribution (top) is still well represented by the diex-
ponential model. The scaling exponent u(p,8,0) is re-
ported below. Looking at the last two pictures (in partic-
ular, at the zoom views) we can conclude that extremely
small errors in u lead to significant deviation in the prob-
ability distribution. Moreover, very similar curves p(p)
can correspond to very different probability distributions,
as is the case of the binary model [23], where it is shown
that a good fit of experimental data on u(p) can be ob-
tained with a model corresponding to an unrealistic prob-
ability distribution given by two 6 functions.

Model (15) improves significantly the description of the
data on the probability distributions at values of the scale
ratio larger than 2, in comparison with the simpler model
(14). This fact may suggest that more sophisticated mea-
sures are necessary to describe the cascade process at
larger scale ratios. However, the presumable increasing
independence of successive breakdown coefficients at in-
creasing values of the scale ratio could lead to a simple

description of the asymptotic behavior. The representa-
tiveness of the diexponential model for intermittency
should be tested with different experimental data.

V. CONCLUSIONS

The description of intermittency in terms of a break-
down process has been considered. It has been shown
that statistics of breakdown coefficients converge to a
unique inertial representation when the local Reynolds
number is sufficiently large, its value being substantially
higher than what is usually compatible with velocity
statistics in the inertial range. For this reason, results ob-
tained at a smaller distance from the dissipative scale can
describe the breakdown process but cannot be assumed as
quantitative for an inertial range cascade. It has also
been shown that the breakdown process is nonhomogene-
ous, being dependent on the relative displacement (A).
Different data sets can be compared only at correspond-
ing values of the displacement parameter, and
simplification of the theory, connected with breakdown
homogeneity, must be revised.

The hypothesis of scale similarity holds only approxi-
mately. A logarithmic correction has been depicted. It
may be related to limitation in the Reynolds number in
the processed data. We hope that this feature will stimu-
late its verification in existing sets of data and measure-
ments at larger Reynolds number. Verification of scale
similarity and the possibly of indicated logarithmic
dependence plays a central role in the future development
of the theory.

Models for intermittency have been chosen inside the
family of infinitely divisible probability distributions. A
measure, based on the difference between two exponential
measures, has been shown to well approximate the
present data. Comparisons have been performed on the
scaling exponent and on the probability distribution. The
latter is more adequate in verification of models whereas
extremely small variations in the scaling exponent may
correspond to substantial differences in the probability
distribution.
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